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Introducing labor

So far, changes in the capital stock are the only amplification
mechanism.

We have seen this is not sufficient, i.e., output is not volatile enough
relative to the data.

Endogenizing labor might lead to more amplification.

Labor is another factor of production that is procyclical.
Labor can adjust instantaneously.
Labor is more important in production than capital.

We use again a model where production takes place at the household
level.
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The utility function

Ut =
C 1−γ
t

1− γ
− ϕ

H1+η
t

1 + η
(1)

Working causes disutility.

ϕ scales the disutility of work relative to consumption.

η is a measure related to the labor supply elasticity (more on this
below).
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The household problem

max
Ct ,Kt+1,Ht

E0

{ ∞∑
t=0

βt

(
C 1−γ
t

1− γ
− ϕ

H1+η
t

1 + η

)}
(2)

s.t.

Ct + Kt+1 = Yt + (1− δ)Kt (3)

Yt = Kα
t (AtHt)

1−α (4)

It = Kt+1 − (1− δ)Kt (5)

lnAt+1 = ρ lnAt + ϵt+1 (6)
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First order conditions

The Lagrangian is:

Λt = E0

{ ∞∑
t=0

βt
[(C 1−γ

t

1− γ
− ϕ

H1+η
t

1 + η

)
− λt [Ct + Kt+1 − Kα

t (AtHt)
1−α − (1− δ)Kt ]

]}
. (7)

∂Λt

∂Ct
: C−γ

t = λt (8)

∂Λt

∂Kt+1
: βtλt = Et

{
βt+1λt+1

(
αKα−1

t+1 (At+1Ht+1)
1−α + (1− δ)

)}
(9)

∂Λt

∂Ht
: ϕHη

t = λt(1− α)Kα
t A

1−α
t H−α

t (10)
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Intertemporal optimality

Combining the optimality conditions yields the Euler equation:

C−γ
t = Et

{
βC−γ

t+1

(
αKα−1

t+1 (At+1Ht+1)
1−α + (1− δ)

)}
(11)

The gain of consuming today (the marginal utility of consumption) = the
expected gain from deferring consumption (the expectations over marginal
utility of consumption tomorrow times the return on savings).
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Intratemporal optimality

Optimal labor supply:

ϕHη
t = C−γ

t (1− α)Kα
t A

1−α
t H−α

t (12)

The marginal disutility of working = the marginal gain from working
(marginal utility of consumption times the marginal product of labor.
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The substitution effect of productivity changes

ϕHη
t = C−γ

t (1− α)Kα
t A

1−α
t H−α

t (13)

As productivity increases, the MPL increases which increases hours
worked. As MPL is high, it is a good time to substitute out of leisure and
into labor. We call this the substitution effect.
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The wealth effect of productivity changes

ϕHη
t = C−γ

t (1− α)Kα
t A

1−α
t H−α

t (14)

As productivity increases, consumption will increase and the MUC will fall.
As MUC falls, the household values less the last unit of consumption and
decreses hours worked to increase leisure. We call this the wealth effect.
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Understanding η

Before turning to the model solution, let us briefly discuss the
interpretation of η. The labor supply elasticity is given by:

∂Ht

∂MPLt

MPLt
Ht

,

with
MPLt = (1− α)Kα

t A
1−α
t H−α

t . (15)
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Understanding η II

Assume there is no wealth effect, ∂Ct
∂MPLt

= 0:

∂Ht

∂MPLt

MPLt
Ht

=
1

η

[
1

ϕ
C−γ
t

] 1
η

MPL
1
η
−1

t
MPLt
Ht

=
1

η

[
1

ϕ
C−γ
t MPLt

] 1
η 1

Ht

=
1

η
.

That is, 1/η is the elasticity of labor supply holding the marginal utility of
consumption (the wealth effect) constant. This is called the Frisch
elasticity.
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Equilibrium

An equilibrium is a set of allocations (Ct , Kt+1, and Ht) taking Kt , At ,
and the stochastic process for At as given such that the budget
constrained, (3), and the optimality conditions (11) and (14) hold.
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Solution to the model

The solution to the model is given by the following set of equations

lnAt+1 = ρ lnAt + ϵt+1 (16)

C−γ
t = Et

{
βC−γ

t+1

(
αKα−1

t+1 (At+1Ht+1)
1−α + (1− δ)

)}
(17)

Ct + Kt+1 = Yt + (1− δ)Kt (18)

Yt = (AtHt)
1−α Kα

t (19)

It = Kt+1 − (1− δ)Kt (20)

ϕHη
t = C−γ

t (1− α)Kα
t A

1−α
t H−α

t (21)

(22)
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Solving for the steady state

Let us set again ϵt = 0 and postulate Kt+1 = Kt and Ct+1 = Ct .
Moreover, define kss = K ss

Hss :

K ss

Hss
=

(
α

1
β − 1 + δ

) 1
1−α

(23)

C ss

Hss
= (kss)α − δkss (24)

I ss

Hss
= δkss (25)

Y ss

Hss
= (kss)α (26)

Hss =

[
1

ϕ

(1− α) (kss)α

[(kss)α − δkss ]γ

] 1
η+γ

. (27)
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Log linearizing output

We are going to study again a first-order approximation around the steady
state. Starting with the production function:

Yt = (AtHt)
1−α Kα

t (28)

Log-linearization

Y ss(1+ Ŷt) = (Ass)1−α(Hss)1−α(K ss)α(1+ (1−α)Ât + (1−α)Ĥt +αK̂t)

Ŷt = (1− α)Ât + αK̂t + (1− α)Ĥt . (29)

Hence, if Ht is procyclical, output will be more volatile than productivity.
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Log linearizing Euler equation

C−γ
t = Et

{
βC−γ

t+1

(
αKα−1

t+1 (At+1Ht+1)
1−α + (1− δ)

)}
(30)

Log-linearization:

C ss(1− γĈt) = βEt

{
C ss(1− γĈt+1)

[
1− δ + α (K ss)α−1 (Hss)1−α(

1 + (1− α)Ât+1 + (1− α)Ĥt+1 + (α− 1)K̂t+1

)]}
(31)

Et Ĉt+1 − Ĉt =
1

γ
(1− β(1− δ))

Et

[
(1− α)Ât+1 + (1− α)Ĥt+1 + (α− 1)K̂t+1

]
. (32)
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Log linearizing Euler equation II

Et Ĉt+1 − Ĉt =
1

γ
(1− β(1− δ))

Et

[
(1− α)Ât+1 + (1− α)Ĥt+1 + (α− 1)K̂t+1

]
. (33)

Consumption growth is high when:

expected productivity is high tomorrow.

expected hours worked are high tomorrow.

expected capital is low tomorrow.
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Log linearizing hours worked

Optimal hours worked:

ϕHη+α
t = C−γ

t (1− α)Kα
t A

1−α
t (34)

Log-linearization

(Hss)η+αϕ(1 + (η + α)Ĥt) =

(1− α)(C ss)−γ(K ss)α(1− γĈt + αK̂t + (1− α)Ât) (35)

Ĥt =
1

η + α
[−γĈt + αK̂t + (1− α)Ât ]. (36)
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The cyclical movement of hours worked

Ĥt =
1

η+α [−γĈt + αK̂t + (1− α)Ât ]. (37)

After an increase in productivity, hours increase (Ât , substitution
effect) or decrease (Ĉt , wealth effect) .

The ensuring capital accumulation increases hours (K̂t) but the
growing consumption (Ĉt) depresses them.

Responses are stronger when the labor supply elasticity is larger.
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Amplification mechanism of hours worked

Ĥt =
1

η + α
[−γĈt + αK̂t + (1− α)Ât ]. (38)

Et Ĉt+1 − Ĉt =
1

γ
(1− β(1− δ))

Et

[
(1− α)Ât+1 + (1− α)Ĥt+1 + (α− 1)K̂t+1

]
. (39)

Consider a positive shock ϵt . As a result, Ât+1 > 0:

Consumption growth is positive, i.e., households defer consumption
and increase investment.

Consumption today is lower than in a static model. This allows the
substitution effect to dominate the wealth effect, i.e., Ĥt > 0.

Rising hours raise the MPK. This leads to yet more willingness to
defer consumption.
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Calibration

Using changes in tax policies, the micro literature finds elasticities of
hours with respect to wages of around 0.5 implying η = 2.

Commonly, ϕ is calibrated such that households spend 1/3 of their
time working in steady state: ϕ = 30.

Remember, in the data, we measure

lnAt = lnYt − α lnKt − (1− α) lnHt (40)

Yet, our model assumes

(1− α) lnAt = lnYt − α lnKt − (1− α) lnHt (41)

Given a target for the standard deviation of TFP of 1.25% and our
AR(1) process, we require: Std . lnAt =

1.25%
1−α .
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Comparing model and data

Data
Y C I H TFP

Std. % 1.61 1.25 7.27 1.9 1.25
ACR(1) 0.78 0.68 0.78 0.81 0.76

Model
Std. % 1.35 0.45 4.37 0.18 1.24
ACR(1) 0.72 0.76 0.71 0.73 0.71
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Comparing model and data

Y C I H TFP

Data
Y 1
C 0.78 1
I 0.83 0.67 1
H 0.87 0.68 0.76 1
TFP 0.79 0.71 0.77 0.49 1

Model
Y 1
C 0.96 1
I 1 0.93 1
H 0.89 0.73 0.93 1
TFP 1 0.94 1 0.92 1
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Understanding cyclicality of hours
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Hours increase after an increase in TFP but by less than 1/η because
consumption increases.

Over time:

MPL returns to its origin.
Consumption stays relatively high because of high K .
The hours response turns negative.

The weak hours response gives little additional amplification.
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Comparing model with data

The successes:

Hours co-move positively with other macroeconomic aggregates.

The model has a little bit more propagation.

The co-movement with TFP is weak relative to other aggregates.

Wealth effects are important late in the cycle.

The misses:

Hours are not nearly as volatile enough.

The co-movement between hours and macroeconomic aggregates is
yet too strong.
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The volatility of hours

Ĥt =
1

η + α
[−γĈt + αK̂t + (1− α)Ât ]. (42)

The volatility is increasing in the labor supply elasticity.

Can we rationalize an elasticity that is higher than that of micro
studies?

We will see later that most hours adjustment over the business cycle
is at the extensive margin. This is not the focus of the micro studies.

We now use a calibration with η = 0.5 which implies ϕ = 6.

Felix Wellschmied (UC3M) RBC 27 / 72



Comparing model and data

Data
Y C I H TFP

Std. % 1.61 1.25 7.27 1.9 1.25

Model η = 2
Std. % 1.35 0.45 4.37 0.18 1.24

Model η = 0.5
Std. % 1.56 0.45 5.30 0.52 1.24
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Comparing model with data

A higher labor supply elasticity helps to increase the volatility of
hours.

In general, it leads to more amplification:

Volatile hours lead to volatile MPK and, hence, investment.
Volatile hours and investment make output more volatile.
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Back to the recursive formulation

Before finishing this topic, we study again how to solve the model globally.
The goal is to find policy functions C(K ,A),H(K ,A) that solve:

V (K ,A) = max
C ,K ′,H

{(
C 1−γ
t

1− γ
− ϕ

H1+η
t

1 + η

)
+ βEV (K ′,A′)

}
Ct + Kt+1 = Yt + (1− δ)Kt

Yt = Kα
t (AtHt)

1−α

lnAt+1 = ρ lnAt + ϵt+1
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Back to the recursive formulation

We have seen that the first order condition is:

Ht =

[
1

ϕ
C−γ
t (1− α)Kα

t A
1−α
t

] 1
η+α

.

Hence, knowing optimal policy C(K ,A) allows us to compute H(K ,A).
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A solution algorithm

One way to solve the problem is:

1. Guess optimal policy for labor, H(K ,A).

2. Solve for optimal policy for consumption C(K ,A).

3. Solve FOC for optimal H(K ,A).

4. Update H(K ,A).

5. Iterate until convergence.
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The RBC Model

Decentralizing the Economy
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Decentralizing the economy

So far, all production took place at the household level.

As a result, we do not have any prices.

We are now introducing firms and, hence, also derive the cyclical
behavior of prices.

We assume households own the factors of production and rent them
to firms.

Households own the firms and firms distribute their profits, Πt , to the
households.

Firms operate in perfectly competitive factor and product markets.
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The household problem

Let Wt be the real wage and Rt be the real rental price of capital. The
household takes these prices as given:

max
Ct ,Kt+1,Ht

E0

{ ∞∑
t=0

βt

(
C 1−γ
t

1− γ
− ϕ

H1+η
t

1 + η

)}
(43)

s.t.

Ct + Kt+1 = WtHt + RtKt +Πt + (1− δ)Kt (44)

It = Kt+1 − (1− δ)Kt (45)
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First order conditions

The Lagrangian is:

Λt = E0

{ ∞∑
t=0

βt
[(C 1−γ

t

1− γ
− ϕ

H1+η
t

1 + η

)
− λt [Ct + Kt+1 −WtHt − RtKt − Πt − (1− δ)Kt ]

]}
. (46)

∂Λt

∂Ct
: C−γ

t = λt (47)

∂Λt

∂Kt+1
: βtλt = Et

{
βt+1λt+1 (Rt+1 + (1− δ))

}
(48)

∂Λt

∂Ht
: ϕHη

t = λtWt (49)
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Intertemporal optimality

Euler equation:

C−γ
t = Et

{
βC−γ

t+1 (Rt+1 + (1− δ))
}

(50)

The gain of consuming today (the marginal utility of consumption) = the
gain from deferring consumption (the expectation over the marginal utility
of consumption tomorrow times the returns on savings).
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Intratemporal optimality

Optimal labor supply:
ϕHη

t = C−γ
t Wt (51)

The marginal disutility of working = the marginal gain from working

(marginal utility of consumption times the wage rate).
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The firm problem

Firms are owned by the households.

They maximize discounted dividends that they pay to the households.
Per period dividends are:

Πt = Kα
t (AtHt)

1−α −WtHt − RtKt . (52)

They operate in perfectly competitive markets and, hence, take prices
as given.
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The stochastic discount factor

As firms are owned by the households, they discount future profits the
same way the household does. Note:

1 = Et

{βC−γ
t+1

C−γ
t

(Rt+1 + (1− δ))
}

(53)

Households discount future utility flows with β.

It would be tentative to think that they also discount future resource
flows with β.

However, this is not the case. They discount these with:
βEtC

−γ
t+1

C−γ
t

.

This implies that discounting of future returns is higher when today’s
consumption is low.
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Consumption growth and equity returns

Source: Shiller, 2014

Finance tells us that stock prices are discounted future returns.

Shiller (1987) shows that stock prices are much more volatile than
dividends.

Hence, we require large time-varying discount rates.
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Consumption growth and equity returns II
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Equity returns

I compute equity returns from the Wilshire 500 index.

Indeed, in the data, consumption growth and equity returns are
positively correlated, i.e., a consumption-based time-varying discount
factor has some explanatory power.

Felix Wellschmied (UC3M) RBC 42 / 72



The firm problem II

Hence, the firm discounts a unit of dividend in period t that generates C−γ
t

units of utility back to the initial period (t = 0). We need to measure this
utility stream relative to the value of paying the dividend in period t = 0:

max
Kt ,Ht

E0

{ ∞∑
t=0

βt C
−γ
t

C−γ
0

[
Kα
t (AtHt)

1−α −WtHt − RtKt

]}
(54)

and
lnAt+1 = ρ lnAt + ϵt+1 (55)
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First order conditions

Rt = αKα−1
t (AtHt)

1−α (56)

Wt = (1− α)Kα
t A

1−α
t H−α

t (57)

Factors own their marginal products. Hence, given the constant
returns to scale production function, profits are zero.
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Equivalence of the centralized and decentralized economy

Plug the price of capital into the Euler equation (53) to obtain:

C−γ
t = Et

{
βC−γ

t+1

(
αKα−1

t+1 (At+1Ht+1)
1−α + (1− δ)

)}
, (58)

which is the Euler equation from the centralized economy. Moreover, use
Πt = 0 and prices in the household’s budget constraint which brings us
back to the national income identity:

Yt = Ct + Kt+1 − (1− δ)Kt︸ ︷︷ ︸
It

. (59)

As you have seen in Macro I, the equivalence of the two economies is a
consequence of the welfare theorems holding.
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Equilibrium

A competitive equilibrium is a set of allocations (Ct , Kt+1, and Ht) and
prices (Rt and Wt) taking Kt , At , and the stochastic process for At as
given such that the budget constrained, (44), the optimality conditions
(53) and (51), and the demand for capital, (56), and labor, (57), hold.
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Solving for the steady state

Rss =
1

β
− 1 + δ (60)

K ss

Hss
=

(
α

1
β − 1 + δ

) 1
1−α

(61)

C ss

Hss
= (kss)α − δkss (62)

I ss

Hss
= δkss (63)

Y ss

Hss
= (kss)α (64)

W ss = (1− α) (kss)α (65)

Hss =

[
1

ϕ

(1− α) (kss)α

[(kss)α − δkss ]γ

] 1
η+γ

. (66)
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Understanding factor price movements

Rt = αKα−1
t (AtHt)

1−α (67)

Wt = (1− α)Kα
t A

1−α
t H−α

t (68)

Log-linearize using Ll Rule 1 and Ll Rule 4 yields:

Rss(1 + R̂t) = α(kss)α−1(1 + (α− 1)k̂t + (1− α)Ât) (69)

R̂t = (α− 1)k̂t + (1− α)Ât (70)

W ss(1 + Ŵt) = (1− α)(kss)α(1 + αk̂t + (1− α)Ât) (71)

Ŵt = αk̂t + (1− α)Ât (72)
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Understanding factor price movements II

R̂t = (α− 1)k̂t + (1− α)Ât

Ŵt = αk̂t + (1− α)Ât

After an increase in productivity, both factor prices increase by
approximately the same amount.

Over time, as the economy accumulates capital, wages stay higher
relative to the interest rate.
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The cyclical movement of hours and wages

ϕHη
t = C−γ

t Wt (73)

Log-linearize using Ll Rule 1 and Ll Rule 4 yields

(Hss)η(1 + ηĤt) = (C ss)−γW ss 1

ϕ
(1− γĈt + Ŵ ) (74)

Ĥt =
1

η
[−γĈt + Ŵt ]. (75)

We have a proportional relationship between wages and hours worked.

The strength of the response depends on the labor supply elasticity.

In the data, hours are twice as volatile as wages. Hence, we need
η < 0.5.
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Results I

Y C I H TFP w r

Data
Std. % 1.61 1.25 7.27 1.9 1.25 0.96 1.02
ACR(1) 0.78 0.68 0.78 0.81 0.76 0.66 0.71

η = 2
Std. % 1.35 0.45 4.37 0.18 1.24 1.19 0.05
ACR(1) 0.72 0.76 0.71 0.73 0.71 0.73 0.71

η = 0.001
Std. % 1.99 0.48 7.09 1.19 1.24 0.96 0.07
ACR(1) 1.71 0.78 0.7 0.71 0.71 0.78 0.7
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Results II

Y C I H TFP w r
Data

Y 1
C 0.78 1
I 0.83 0.67 1
H 0.87 0.68 0.76 1
TFP 0.79 0.71 0.77 0.49 1
w 0.12 0.29 0.07 -0.06 0.34 1
r 0.24 0.11 0.20 0.40 0.05 -0.13 1

η = 0.001
Y 1
C 0.91 1
I 1 0.87 1
H 0.94 0.72 0.97 1
TFP 1 0.93 0.99 0.93 1
w 0.91 1 0.87 0.72 0.93 1
r 0.96 0.75 0.98 1 0.94 0.75 1
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Taking stock

The model implies the positive co-movement between hours and other
aggregates.

For hours to move sufficient over the cycle, we require huge labor
supply elasticities because of a strong wealth effect.

Introducing hours creates little amplification. The reason is the strong
wealth effect.

The model predicts a strong co-movement between prices and
quantities. This is absent in the data.

Interest rates are not nearly volatile enough.
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The weak link between prices and quantities

We have a single shock model. Maybe we require additional shocks.

We will consider interest rate shocks later in the course.

Hours worked may be a poor measure of labor quantity.

In a recession, low-educated lose their job first.

Implies that aggregate wages may move little.
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The RBC Model

Asset pricing
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Asset pricing

We have seen how to compute the price of capital (equity).

We will now compare the price of capital to the price of a safe asset
(bonds, Bt).

The bonds are provided by the firms and pay a certain return.

The hope is that the RBC model explains the equity premium, i.e.,
the fact that stocks pay an average excess return over bonds of 6%
annually.
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The household problem

Households now choose how many bonds to accumulate. Note, the
interest rate on bonds is pre-determined. The household knows today the
return it will get tomorrow:

max
Ct ,Kt+1,Bt+1,Ht

E0

{ ∞∑
t=0

βt

(
C 1−γ
t

1− γ
− ϕ

H1+η
t

1 + η

)}
(76)

s.t.

Ct + Kt+1 + Bt+1 = WtHt + RtKt +Πt + (1− δ)Kt + (1 + rt−1)Bt

(77)

It = Kt+1 − (1− δ)Kt (78)
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First order conditions

The Lagrangian is:

Λt = E0

{ ∞∑
t=0

βt
[(C 1−γ

t

1− γ
− ϕ

H1+η
t

1 + η

)
−λt [Ct+Kt+1+Bt+1−WtHt−RtKt−Πt−(1−δ)Kt−(1+rt−1)Bt ]

]}
.

(79)

∂Λt

∂Ct
: C−γ

t = λt (80)

∂Λt

∂Kt+1
: βtλt = Et

{
βt+1λt+1 (Rt+1 + (1− δ))

}
(81)

∂Λt

∂Ht
: ϕHη

t = λtWt (82)

∂Λt

∂Bt+1
: βtλt = βt+1Etλt+1(1 + rt) (83)
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Optimal decisions for bonds

The only new condition is the one for bonds:

C−γ
t = βEtC

−γ
t+1(1 + rt) (84)

The household is guaranteed return 1 + rt tomorrow. When buying a bond
today, the household gives up the marginal utility of consumption today
and gains the discounted expected marginal utility tomorrow times the
return on holding the bond.
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The firm problem

Firms can now also pay dividends by issuing new bonds. They have to pay
back last period’s bonds:

max
Kt ,Ht ,Bt+1

E0

{ ∞∑
t=0

βt C
−γ
t

C−γ
0[

Kα
t (AtHt)

1−α −WtHt − RtKt + Bt+1 − (1 + rt−1)Bt

]}
. (85)

First order condition of bonds:

C−γ
t = β(1 + rt)EtC

−γ
t+1. (86)

Note that the first order condition of firms and the household are the
same. Hence, any level of bonds is an equilibrium.
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Equity and bond returns

Our goal is to understand the excess returns of equity over bonds.

I will first show that studying the steady state is not very insightful.

Similarly, a first order Taylor series expansion around the steady state
brings little insight.

The reason is that aggregate risk matters for asset prices.

Felix Wellschmied (UC3M) RBC 61 / 72



Steady state bonds and stocks

r ss =
1

β
− 1 (87)

Rss =
1

β
− 1 + δ. (88)

In steady state, r ss = Rss − δ. This should be no surprise. In steady state,
there is no uncertainty and, hence, returns on equity are fully predictable
which makes them a perfect substitute to bonds.
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Log-linearizing bonds and stocks

We take again a first-order Taylor series expansion:

Et Ĉt+1 − Ĉt =
1

γ
(1− β)r̂t (89)

Et Ĉt+1 − Ĉt =
1

γ
(1− β(1− δ))Et R̂t+1. (90)

With δ = 0, we have the exact same dynamics for equity and bonds. The
reason is that with a first-order approximation, risk has no effects on the
dynamics of the system.
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Comparing bonds and stocks

Let us now go back to the non-linear solution:

1 = β
EtC

−γ
t+1

C−γ
t

(1 + rt) (91)

1 = Et

{
β
C−γ
t+1

C−γ
t

(Rt+1 + (1− δ))
}

(92)

Note that rt is pre-determined but Rt+1 and Ct+1 are not. Technically, the
difference between the two equations is that the expectation operator in
the bond equation is only over consumption tomorrow while in the equity
equation it is about the joint behavior of consumption and equity returns
tomorrow.
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Comparing bonds and stocks II

1 = Et

{
β
C−γ
t+1

C−γ
t

(1 + Rt+1 − δ)
}

(93)

Remember, for two stochastic variables, X , Y , we have
E(XY ) = EXEY + COV (X ,Y ):

1 = β
EtC

−γ
t+1

C−γ
t

+ β
EtC

−γ
t+1

C−γ
t

Et(Rt+1 − δ) + COV

(
β
EtC

−γ
t+1

C−γ
t

,Rt+1 − δ

)
,

(94)

which has an additional covariance term relative to the bond equation:

1 = β
EtC

−γ
t+1

C−γ
t

+ β
EtC

−γ
t+1

C−γ
t

rt (95)
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Comparing bonds and stocks III

Combining the two optimality conditions:

β
EtC

−γ
t+1

C−γ
t

rt = β
EtC

−γ
t+1

C−γ
t

Et(Rt+1 − δ) + COV

(
β
EtC

−γ
t+1

C−γ
t

,Rt+1 − δ

)
(96)

β
EtC

−γ
t+1

C−γ
t

[
Et(Rt+1 − δ)− rt

]
= −COV

(
β
EtC

−γ
t+1

C−γ
t

,Rt+1 − δ

)
, (97)

where the left-hand side is the (weighted) equity premium. We have seen

that the covariance term is negative. Whenever, β
EtC

−γ
t+1

C−γ
t

is large, Rt+1 − δ

must be small. For example, at the end of a boom, Ct > Ct+1 and Rt+1 is
small. The model predicts an equity premium because investors need to be
compensated to defer consumption when the marginal product of capital is
high.
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Comparing bonds and stocks IV

We can derive further insights by writing the equation in terms of
consumption growth and making distributional assumptions. Define
xt+1 = lnCt+1 − lnCt , bond returns RB

t = 1 + rt and equity returns
RE
t+1 = 1 + Rt+1 − δ. Then the optimality conditions become

βEt exp(−γxt+1 + lnRB
t ) = 1 (98)

βEt exp(−γxt+1 + lnRE
t+1) = 1. (99)

Now assume xt+1 and xt+1 + lnRE
t+1 are normally distributed. For a

variable y ∼ N(ȳ , σ2) we have that Y = exp(y) is log-normally distributed
and

EY = exp

(
ȳ +

1

2
σ2

)
. (100)
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Comparing bonds and stocks V

The optimality conditions become

β exp
(
− γx̄t+1 + lnRB

t +
1

2
Var(−γxt+1)

)
= 1 (101)

β exp
(
− γx̄t+1 + Et lnR

E
t+1 +

1

2
Var(−γxt+1 + lnRE

t+1)
)
= 1. (102)
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Comparing bonds and stocks VI

Equate the equations and take logs to get

Et lnR
E
t+1 − lnRB

t =
1

2
Var(−γxt+1)−

1

2
Var(−γxt+1 + lnRE

t+1) (103)

= −1

2
σ2
lnRE

t+1
+ γCOV (xt+1, lnR

E
t+1), (104)

Finally, note that:

EtR
E
t+1 = exp

(
Et lnR

E
t+1 +

1

2
σ2
lnRE

t+1

)
(105)

lnEtR
E
t+1 = Et lnR

E
t+1 +

1

2
σ2
lnRE

t+1
. (106)
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Comparing bonds and stocks VII

lnEtR
E
t+1 − lnRB

t︸ ︷︷ ︸
equity premium

=γCorr(xt+1, lnR
E
t+1)σxt+1σlnRE

t+1
. (107)

Note, investors need to be compensated for the unconditional
volatility of stocks, σlnRE

t+1
. This is as in your standard undergraduate

finance text book.

The key new insight is that they also need to be compensated for the
co-movement of stock returns and consumption growth.

The equity premium is increasing in risk aversion.

This insight carries over to any comparison of returns. German
government bonds pay particular low average interest rates. Some
argue: Crisis lead to a flight to safety and high conditional returns on
German bonds.
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Comparing bonds and stocks VIII

lnEtR
E
t+1 − lnRB

t =γCorr(xt+1, lnR
E
t+1)σxt+1σlnRE

t+1
. (108)

In US data, σxt+1 = 0.036, σlnRE
t+1

= 0.167, and Corr(xt+1, lnR
E
t+1) = 0.4.

With γ = 2 we have an equity premium of 0.48%.

To get to an equity premium of around 6% we require γ = 25.

With such a high risk aversion, the model fails to generate meaningful
consumption volatility.

Question: If consumption fluctuates little over the cycle, why do
households demand such high insurance payments?
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Critiques of the RBC model

Three common critiques of the RBC model:
1 Model performance:

The model shows too little amplification of technology shocks.
The model cannot the volatility of hours with reasonable labor supply
elasticities.
The model implies strong co-movement of aggregates and prices.
The model implies only a small equity premium.

2 Simplicity:

There is only one shock, surely other shocks matter, e.g., money.
There are no frictions affecting the business cycle.

3 Implication: The Great Recession was the “Great Vacation”.
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